طرق عملية لحل تمارين الاستمرارية

1. دراسة استمرارية دالة عند عدد حقيقى:

لدراسة استمرارية الدالة f عند العدد الحقيقي a يجب أن:

- نحسب أو لا f(x) انتم نقارنهما. (a) نحسب أو لا
- a عند مستمرة فإن الدالة f(x) = f(a) مستمرة عند . f(a)
- a عند مستمرة عند f الدالة f ليست مستمرة عند f فإن الدالة f عند f

$$\begin{cases} f(3) = 0 \\ \forall x > 3; f(x) = \sqrt{x-3} \end{cases}$$
 :ب $\begin{cases} 3; +\infty \\ 3; +\infty \end{cases}$ المعرفة على $f(x) = 0$

أدرس استمر ارية الدالة f عند 3.

- $\lim_{x \to 3} f(x) = \lim_{x \to 3} \sqrt{x 3} = 0$ ومنه فإن $f(x) = \sqrt{x 3}$ ومنه فإن f(x) = 0
 - وبما أن: f(x) = f(x) فإن الدالة f(x) = f(3) عند 3.

2. دراسة استمرارية دالة على مجال معين:

لدر اسة استمر ارية دالة على المجال I، خاصة إذا كانت عبارتها مختلفة باختلاف قيم x، يجب أن:

- نثبت استمر اریة الدالة باستعمال ما مر علینا فی الدرس.
- نثبت استمر ارية الدالة عند النقاط التي تكون فيها الدالة معرفة بصفة خاصة.

- $[2;+\infty[$ مستمرة على $[2;+\infty[$ لأنها ثلاثي حدود. والدالة $x \to x-2$ مستمرة على $[2;+\infty[$ (1) .]2;+ ∞ [على]2;+ ∞ [مستمرة على]2;+ ∞ [ومنه فإن الدالة تآلفية و لا تنعدم في المجال
 - نا: $\forall x > 2; f(x) = \frac{x^2 4}{x 2}$ دينا:

$$\lim_{x \to 2} f(x) = \lim_{x \to 2} \frac{x^2 - 4}{x - 2} = \lim_{x \to 2} \frac{(x - 2)(x + 2)}{x - 2} = \lim_{x \to 2} (x + 2) = 4$$

(2) .2 مستمرة عند
$$f$$
 مستمرة فإن الدالة $f(x) = f(2) = 4$ فإن الدالة $f(x) = 4$

. $[2;+\infty[$ من (2) ور2) نستنتج أن الدالة f مستمرة على

: f(x) = k يعيين عدد حلول معادلة من الشكل 3

لتعيين عدد حلول معادلة من الشكل f(x) = k على المجال I، نستعمل مبر هنة القيم المتوسطة من أجل كل مجال من I تكون فيه الدالة f رتيبة تماما. ولأجل ذلك يجب أن:

- . f(x) = k الشكل معادلة من الشكل *
 - I ندرس تغیرات الداله f ، ونشکل جدول تغیراتها علی I
- نحدد المجالات I_i من I التي تكون من أجلها الدالة f رتيبة تماما. ومن أجل كل مجال I_i ، نقوم بما بلي:
 - نثبت أن الدالة f مستمرة.
 - نثبت أن الدالة f رتيبة تماما.
 - . $k \in J_i$ نحدد النهایات أو قیم x عند حدود I_i ولیکن J_i صورة النهایات أو قیم x عند حدود النهایات أو قیم x
 - I_i اليس لها حلول على f(x)=k اليس لها حلول على f(x)=k
- . I_i وحيدا على f(x) = k وإن كان f(x) = k وان كان أو مبر هنة القيم المتوسطة، المعادلة المعادلة القيم المتوسطة القيم المتوسطة المعادلة المعا

 I_i نكرر المراحل السابقة لكل مجال من المجالات

. I على f(x) = k نستنتج في الأخير عدد حلول المعادلة

f(x) = k ملاحظة: من خلال جدول تغيرات الدالة f ، وباتباع الأسهم، يمكن تحديد عدد حلول المعادلة

ومن ثمّ يتبقى لنا تحديد قيم هذه الحلول.

 \mathbb{R} على \mathbb{R} على \mathbb{R} على \mathbb{R} على على \mathbb{R}

<u>الحل:</u>

- \mathbb{R} على f(x)=0 على عدد حلول المعادلة f(x)=0 على $\forall x \in \mathbb{R}; f(x)=x^3+x^2-x+1$
- . $\forall x \in \mathbb{R}; f'(x) = 3x^2 + 2x 1$ الدالة f قابلة للاشتقاق على \mathbb{R} لأنها دالة كثير حدود، ولدينا:
 - $x_1 = -1$; $x_2 = \frac{1}{3}$ ومنه فإن $\Delta = 16 > 0$. $\Delta = 16 > 0$ ثلاثي حدود مميزه:
 - من هنا فإن جدول إشارة f' يكون كالتالى:

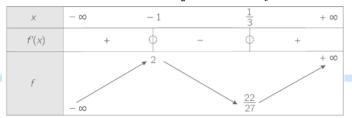
X	- ∞	- 1		$\frac{1}{3}$		+ ∞
f'(x)	4	+ •	-	•	+	

❖ من جهة أخرى لدينا:

- $\lim_{x \to -\infty} \left(x^3 + x^2 x + 1 \right) = \lim_{x \to -\infty} x^3 = -\infty$
- $\lim_{x \to +\infty} \left(x^3 + x^2 x + 1 \right) = \lim_{x \to +\infty} x^3 = +\infty$
- $f(-1) = (-1)^3 + (-1)^2 (-1) + 1 = 2$

•
$$f\left(\frac{1}{3}\right) = \left(\frac{1}{3}\right)^3 + \left(\frac{1}{3}\right)^2 - \left(\frac{1}{3}\right) + 1 = \frac{22}{27}$$

• من هنا فإن جدول تغيرات الدالة f يكون كالتالي:



- $\begin{bmatrix} \frac{1}{3},+\infty \end{bmatrix}$ و $\begin{bmatrix} -1,\frac{1}{3} \end{bmatrix}$ ، $\begin{bmatrix} -\infty,-1 \end{bmatrix}$ نلاحظ من خلال جدول تغيرات الدالة f أنها رتيبة تماما على
- و على $\lim_{x\to -\infty} f(x) = 2$ و بما أن $\int_{x\to -\infty} \lim_{x\to -\infty} f(x) = -\infty$ و بما أن $\int_{x\to -\infty} \lim_{x\to -\infty} f(x) = 0$ و بما أن

.] $-\infty$; -1[على القيم المتوسطة، المعادلة f(x)=0 تقبل حلاً وحيدا على ا $-\infty$; -1[.

على $f\left(\frac{1}{3}\right) = \frac{22}{27}$ و $f\left(-1\right) = 2$ على أن $f\left(-1\right) = \frac{22}{27}$ و مستمرة ومتناقصة تماما، كما أن $f\left(\frac{1}{3}\right) = \frac{22}{27}$ و وبما أن

. $\left[-1; \frac{1}{3}\right]$ لا تقبل حلول على f(x) = 0 المعادلة القيم المتوسطة، المعادلة المعادلة f(x) = 0

و على $\int \frac{1}{3};+\infty$ الدالة f مستمرة ومتزايدة تماما، كما أن $\int \frac{22}{27} = \frac{1}{3}$ و $f(x) = +\infty$ ، وبما • على $f(x) = +\infty$

 $\begin{bmatrix} \frac{1}{3}; +\infty \end{bmatrix}$ فبتطبيق مبر هنة القيم المتوسطة، المعادلة f(x) = 0 لا تقبل حلول على f(x) = 0

. \mathbb{R} مما سبق نستنتج أن المعادلة $x^3 + x^2 - x + 1 = 0$ تقبل حلا وحيدا على

4. إثبات أن المعادلة من الشكل f(x) = k تقبل حلا وحيدا:

لإثبات أن معادلة من الشكل f(x) = k تقبل حلا وحيدا على مجال معين I ، يجب:

- . f(x) = k الشكل على معادلة من الشكل f(x) = k
 - I در اسة تغيرات الدالة f ، وتشكيل جدول تغيراتها على I
 - اثبات أن الدالة f مستمرة على I.
 - I الدالة f رتيبة تماما على f
- $k \in J$ نحدید النهایات أو قیم x عند حدود I. ولتکن J صورة I بالدالة f. نحدد إن کان x
 - I ایس لها حلول علی f(x) = k فإن المعادلة f(x) = k
- . I على على وحيدا على f(x)=k وحيدا على المتوسطة، المعادلة f(x)=k وحيدا على المتوسطة، المعادلة f(x)=k

مثال: أثبت أن المعادلة 2x+1=0 تقبل حلا وحيدا على $[-\infty, -1]$.

<u>الحل:</u>

- على f(x) = 0 المعادلة f(x) = 0; ثم ندرس عدد حلول المعادلة f(x) = 0; غلى $\forall x \in]-\infty; -1]$ على $[-\infty; -1]$
 - الدالة f قابلة للاشتقاق على $[-\infty,-1]$ لأنها دالة كثير حدود، ولدينا:

$$\forall x \in]-\infty;-1]; f'(x) = 3x^2 - 2$$

•
$$3x^2 - 2 = 0 \Leftrightarrow x^2 = \frac{2}{3} \Leftrightarrow x_1 = \sqrt{\frac{2}{3}}$$
; $x_2 = -\sqrt{\frac{2}{3}}$.

 $[-\infty;-1]$ وبما أن $[-\infty;-1]$ فإن f'>0 على المجال $[-\infty;-1]$ ، ومنه فإن الدالة f متز ايدة تماما على

من جهة أخرى لدينا:

- $\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} (x^3 2x + 1) = \lim_{x \to -\infty} x^3 = -\infty$.
- $f(-1) = (-1)^3 2(-1) + 1 = 2$

ومنه فإن جدول تغيرات الدالة f يكون كالتالى:

X	-∞ -1
f'(x)	+
f	→ 2 - ∞

و با نان f(-1)=2 و با الدالة f مستمرة ومتزايدة تماما، كما أن $f(x)=-\infty$ وبما أن $-\infty;-1$

.] $-\infty$; -1] على [$-\infty$; -1] تقبل حلا وحيدا على f(x) = 0 المعادلة ورديدا على [$-\infty$; -2]

5. إيجاد حصر لحل معادلة من الشكل f(x) = k باستعمال حاسبة أو جهاز كمبيوتر:

لابجاد حصر لـ α باستعمال حاسبة أو جهاز كمبيوتر ، بجب أن:

- ♦ ندخل عبارة الدالة f على الحاسبة أو جهاز الكمبيوتر،
 - f(x) بختار سعة الحصر فنتحصل على جدول بقيم
- f(a) < k < f(b) على الجدول، نحدد قيم a و b التي تكون من أجلها \bullet
 - $a < \alpha < b$: نستنتج عندها حصر الـ α ، حيث \Leftrightarrow

lpha مثال: f(x)=0 تقبل حلا وحيدا . $f(x)=x^3+3x^2+2$ على با تقبل على وحيدا f(x)=0على \mathbb{R} . أوجد حصرا لـ α سعته α

- . f ندخل x^2+3x^2+2 على الحاسبة أو جهاز الكمبيوتر ونرسم C_f التمثيل البياني للدالة fx=-3,1 و x=-3,3 بتكبير الشكل نلاحظ أن C_f يقطع محور الفواصل بين
 - . p=0.1 بسعة قيمتها x=-3.1 و x=-3.1 بسعة قيمتها x=0.1
 - نستنتج أن المعادلة f(-3,1) = 1,039 وأن: f(-3,2) = -0,048 نستنتج أن المعادلة \bullet x = -3.1 و x = -3.2 و تقبل حلا بين x = -3.2 و f(x) = 0
 - p = 0.01 بسعة قيمتها x = -3.10 و x = -3.20 بسعة قيمتها x = -3.00

- عمن خلال الجدول، نلاحظ أن f(-3,20) = -0,048 وأن: f(-3,19) = 0,066541 نستنتج أن المعادلة x = -3.19 و x = -3.20 تقبل حلا بين f(x) = 0
 - $.-3.20 < \alpha < -3.19$ أن $.-3.20 < \alpha < -3.19$

ويجاد حصر لحل المعادلة f(x) = 0 بطريقة التنصيف:

لإيجاد حصر لـ α حل المعادلة α على المجال α على المجال معادلة α على المعادلة و α على المجاد

- $f(b) \times f(m)$ و $f(a) \times f(m)$ عيث: $f(a) \times f(m)$ عيث: $f(a) \times f(m)$ و $f(a) \times f(m)$
- نواصل بنفس الطريقة من خلال تعويض a أو b ب m وذلك لغاية الحصول على الحصر المرغوب \clubsuit

 α دالة معرفة على f(x)=0 بـ: $f(x)=x^3+2x-1$ بنعلم أن المعادلة f(x)=0 تقبل حلا وحيدا مثال: f(x)=0على [0;2]. أوجد حصراً لـ α سعته 10^{-1}

- $m = \frac{0+2}{2} = 1$ ليكن m مركز المجال [0,2]، ومنه فإن $m = \frac{0+2}{2}$
- $f(0) \times f(1) = (0^3 + 2 \times 0 1) \times (1^3 + 2 \times 1^2 1) = (-1)(2) = -2 < 0.$

ومنه فإن $\alpha < 1 > 0$.

- $m' = \frac{0+1}{2} = 0.5$ ليكن m' مركز المجال [0;1]، ومنه فإن m'
- $f(0) \times f(0,5) = (-1) \times ((0,5)^3 + 2 \times (0,5)^2 1) = (-1)(-0,375) = 0,375 > 0.$
- $f(0,5) \times f(1) = (-0,375)(2) = -0,75 < 0.$

ومنه فإن $0.5 < \alpha < 1.0$.

